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The three-dimensional crystal structure of~_atalase from Micrococa~s lysodeikticus has been solved by multiple isomorphous replacement and refined 
at 1.5 A resolution. The subunit of the tetramerlc molectde of 222 symmetry consists of a single polypeptide chain of about 500 amino acid residues 
and one harm group. The crystals Ixlong to space group P422~2 with unit cell parameters a = b = 106.7 A, c = 106.3 A. and there is one subunit 
of the tetramer per asymmetric unit. The amino acid sequence has been tentatively determined by computer graphics model building and comparison 
with the known three-dimensional structure of beef liver camlase and sequences ol'seveml other catalases. The atomic mcn:lel has been refined by 
Hendriekson and Konnert's least-squares minimisation against 94,315 reflections between 8 A and 1.5 A. The final model consists of 3,977 
non-h::drogen atoms of the protein and haem group, 426 water molecules and one sulphate ion. The secondaIT and tertiary structures of the bacterial 

catalase have been analyzed and a comparison with the structure of b~f liver catalase has been made. 

Catalase; X-Ray structure; Micrococcus lysodeikticus 

1. I N T R O D U C T I O N  

Catalase (EC I. 11.1.6) is an enzyme with a molecular 
mass o f  230-300 kDa  that is present in the cells of  all 
aerobic organisms. It decomposes hydrogen peroxide to 
molecular oxygen and water: 

2H202 --~ 2H20  + O~. 

The properties o f  catalase have been reviewed by Deis- 
seroth and Dounce  [1] and Schonbaum and Chance [2]. 
The most intensely investigated catalases are the tetra- 
meri t  ones with a harm group in the active site o f  each 
subunit. Crystals of  catalases t'rom a variety o f  sources 
have been described and some of  them have been used 
for structure investigation by X-ray diffraction. 

To date~ the three-dimensional structures o f  two eat- 
alases have been determined and refined: beef liver cat- 
alase (BLC) at 2.5 A resolution [3] and that o f  the 
fungus, Penicillium t,itale (PVC), at 2.0 A resolution 
[4,5]. Previously we have investigated the polypeptide 
chain folding in two bacterial catalases, the non-harm 
hexameric Mn-catalase from Thermus tt,.ermophilus 
with a different subunit organization [6], and the tetra- 
merle haem-containing catalase from Micrococcus lyso- 
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deikticus (MLC) with spatial organization closely re- 
sembling that of  BLC [7,8]. Preliminary crystallogra- 
phic results have been reported for two other haem- 
containing bacterial catalases, from E. coil [9] and from 
Proteus mirabilis PR [10]. Compar ison o f  the three-di- 
mensional structures of  the catalases from evolutionar- 
ily distant sources suggests regions o f  the enzyme mole- 
cule that are most  important  for activity, folding and 
quaternary interactions. Here we report the structure o f  
MLC "~'efined at 1.5 A resolution. 

2. M A T E R I A L S  A N D  M E T H O D S  

2.1. Crystallization and preparation of hen v), atom derivatives 
Catalase from Micrococcus fysodeiktfcus (MLC) was prepared as 

d~.~ribed by Herbert and Pinsent II 1]. Ct2tstals of MLC were obtained 
at room temperature by hanging-drop vapour ditTmion using ammo- 
nium sulphate as precipitant. The most suitable crystals for X-ray 
crystallography were obtained in 15-18 ,ul droplets of solution con- 
taining 20-30 mg/ml MLC, 0.6--0.8 M ammonium sulphate and 0.05 
M sodium acetate buffer at pH 5.2. The equilibrating solution con- 
sisted of 0.6 ml of 1.2-1.4 M ammonium sulphate buffered to the same 
pH. Crystals of dimensions 0.5-1.0 mm grew after one week. 

X-Ray studies of the MLC crystals showed that they belonged to 
the tetragonal space group, P4,2~2, with unit cell dimensions a = b = 
106.7 A, c = 106.3 A. and that there was one subunit of the tetramer 
per asymmetric unit. This was in agreement with results oblained 
previously by Marie et ai. [12]. MLC crystals wer ,~ stable in the con- 
ventional X-ray beam for about 100 h and diffracted up to 1.5 A 
resolution. 

Heavy atom derivatives were obtained by soaking native protein 
crystals in solutions of heavy atom compounds in the above precipitat- 
ing liquor at concentrations of 0.002-0.005 M for I-2 weeks. 
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2.2. X-Ray data collection 
X-Ray diffraction data from crystals of native protein and isomor- 

phous heavy atom derivatives w~re collected up tc~ 2.5 A resolution 
on a KARD-4 area detector diffractometer [13]. High resolution data 
to i .5 A were collected flora a native crystal using the EMBL synchro- 
tron radiation beam.line X31 at the DORIS storage ring, DESY, 
Hamburg, with an image plate as detector. This data set was processed 
using the MOSFLM program package [14]. Each data set was col- 
leered fi'om a single crystal. A summary of~hc data collection is given 
in Table I. 

refinement cycles with gradual e~tension of resolution from 2.fi to 1.5 
A, five manual rebuildings and addition of water molecules the R- 
factor dropped to 0.150 for all 94,315 reflections in the resolution 
range 8-1.5 A. Water molecules were located asin~ the (Fo-F¢) differ- 
once map. Peaks in this map were assigned as water molecules if they 
were situated in a position to give at least one hydrogen bonding 
contact to a protein atom, 

The secondary structure of the subunit was determined by the algo- 
rithm of Kabsch and Sander [24] using the program DSSP. 

2.3, lahasing 
Initial phases for :he protein structure factors up to 2.5 A resolution 

were determined by multiple isomorphous replacement (MIR), The 
major heavy atom binding site was determined for each derivative 
independently from the Harker sections o1' the difference Patterson 
synthesis. The positional parameters of the heavy atoms were refined 
[15] and phase information from the various derivatives was combined 
usin/~ Hendrickson and Lanman coefficients [16]. Phases obta[rted 
from these coefficients were used for calculation of difference Fourier 
maps to find minor sites which were used in the next refinement cycle, 
This procedure was repeated several times and ~ave a final mean figure 
ofmerit for the MIR phases of 0.64. Final statistics for the heavy atom 
refinement are listed in Table Ii. For further improvement of the 
phases, ~olvent flatmning [17,18] was used. After 5 cycles of this pro- 
eedure the best electron density map was calculated and used for 
interpretation. 

2.4. Model building and refinement 
A partial model was built using the interactive graphics program, 

FRODO [19], implemented on a Tektronix-4129 by D. Vassylyev [20]. 
The quality of the electron density map was quite 8cod and allowed 
the tracing of the polypeptide chain and the fitting of some side chains. 
The sequence of MLC was unknown and at this stage the knowledge 
of sequences of five other catalases from different species [21] was very 
useful. The initial model included 481 amino acid residues with 3,372 
non-hydrogen atoms and one harm group per subunlt. This model was 
refined by the Hendriekson and Konnert stereochemically restrained 
le~t-squares minimization procedure [22l. The initial ceystallographie 
R-factor was 0.395 in the resolution ranl~e from 5 to 3 A. After 25 
cycles of refinement with progressive extension of resolution to 2.5 A 
(the limit of the isomorphous phases) the R-factor fell to 0.264. During 
this refinement, only positional atomic coordinates and the overall 
scale and temperature factor were refined. 

Phases e,alculated from this partially refined model were combined 
with MIR phases and the 'best' electron density map calculated. The 
revised model was refined using restrained least-squares but now with 
individual atomic temperature factors and using FFT subroutines in 
the structure factor and gradient calculation [23], as implemented by 
us for all space groups except cubic (unpublished results). After 125 

Table I 

Statistics of data sets 

Crystal Resolu- Number of reflections Rm,~ (,%) R,t (%) 
tion (A) 

Measured Unique 

Native-I 2,5 122,125 20,868 8.7 6,3 
Native-2 1.5 362,868 95,355 7.4 6.1 
MMA 2.5 177,879 20,732 9.5 5.5 
UO2fNOD, 2.5 137,727 20,576 10.7 7.2 
KAu(CN)~ 2.5 124,501 21,386 10.5 9.1 

Rm~r~, = ~,£'llh.:<I>hl/--r<l>h, where <l>h = ~rlh.i/Nia. 
R,, = ,r,rah.d,rZIh:, where h --- (h,k,l), Nh is the number of nmasured 
~luivalents, and i = 1, N h. 

ln.~ and at,.~ are the measured intensity and its standard deviation, 

3. R E S U L T S  A N D  D I S C U S S I O N  

T h e  t e t r a m e r i c  m o l e c u l e  o f  M L C  wi th  222 s y m m e t r y  
has  the d i m e n s i o n s ,  66 × 90 × 93 A .  E a c h  s u b u n i t  o f  
M L C  c o n t a i n s  o n e  p o l y p e p t i d e  c h a i n  a n d  o n e  h a r m  
g r o u p  (F ig .  l a ) .  T h e  ref ined a t o m i c  m o d e l  o f  the sub -  
uni t  cons i s t s  o f  3,977 n o n - h y d r o g e n  a t o m s  o f  p r o t e i n  
a n d  h a r m ,  426 water" mo lecu l e s  a n d  one  s u l p h a t e  ion ,  
T h e  m e a n  v a l u e  o f  the  i s o t r o p i e  t e m p e r a t u r e  f a c t o r  fo r  
the  p r o t e i n  a t o m s  is 1(~.0 A 2, a n d  for  s o l v e n t  a t o m s  is 
23.6 A 2. T h e  f inal  r e f i nemen t  s ta t i s t ics  a r e  s h o w n  in 
T a b l e  I I I .  T h e  m e a n  e r r o r  in the  a t o m i c  c o o r d i n a t e s  
e~ t ima ted  as  by  L u z z a t i  [25] is 0 .10-0 .  l 5 A 

A n  ' X - r a y  s e q u e n c e '  o f  M L C  was  d e t e r m i n e d  f r o m  t h e  
1.5 A r e s o l u t i o n  e l e c t r o n  dens i ty .  D u r i n g  r e f i n e m e n t  
a n d  m o d e l  r e b u i l d i n g  it was  p o s s i b l e  to  l oca t e  497 
a m i n o  ac id  r e s idues  in the  M L C  s u b u n i t .  A l l  r e s idues  
wi th  a r o m a t i c  side cha in s  were c l ea r ly  d e t e r m i n e d  a n d  
r e s idues  s i t u a t e d  in the  i nne r  p a r t s  o f  the  m o l e c u l e  c o u l d  
be def ined  easi ly ,  H o w e v e r ,  a m b i g u i t y  r e m a i n s  in such  
res idues  as  A s h  o r  A s p ,  G i n  o r  G l u  a n d  V a l  o r  Thr .  I n  
a d d i t i o n  the re  a r e  s o m e  d o u b t s  in seve ra l  s ide  c h a i n s  
s i t u a t e d  o n  t h e  su r face  o f  the m o l e c u l e  w i th  h igh  so lven t  
access ib i l i ty  a n d  h igh  t e m p e r a t u r e  f ac to r s .  In  the  f inal  
e l e c t r o n  d e n s i t y  m a p  the re  was  s o m e  t m e x p l a i n e d  elec-  
t r o n  dens i ty  a t  t he  N - t e r m i n a l  r eg ion  o f  the  p o l y p e p t i d e  
cha in ,  a n d  th i s  is t he  r e a s o n  why  n u m b e r  3 was  a s s igned  
to  the  first r es idue .  

A s te reo  p l o t  o f  the  M L C  m o n o m e r  is s h o w n  in Fi~ .  
I b, T h e  p o l y p e p t i d e  cha in  o f  the  M L C  s u b u n i t  f o r m s  

Table I1 

Derivatives and phase refinement parameters 

Compound Resolu- R, (%) R, (%) Phasing N). ~ Figure of 
tion (A) power sites merit 

MMA 2.5 11.4 64.5 1.7 4 0.37 
UO~fNO.0.~ 2.5 12,4 62.7 1.8 3 0.39 
KAu(CN)~ 2.5 14.9 68.7 1.5 1 0.36 

Overall figure 0.64 
of merit 

/L = ~lFpo[- lFphJ£Wo[, R, = ,~lFpho{ -{Fph~ll/~lFphol -}Fpoll, and 
phasing power = fdE. 
Fpo and Fph~ are observed structure factors for the native and heavy 
atom derivatives, respectively; Fph~ is the calculated structure/actor 
for a derivative; fh is the root mean square contribution of the heavy 

atom; and E is the rms lack of closur~ error. 
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T 

Fig, I. A stereo plot of the C= atoms and haem group for (a) the whole molecule and (b) one subunit. The orientations of molecule and subunit 
are the same. P, Q and R are molecular symmetry axes. 

two domains of  different length and organization. The 
large, haem-containing (cz+~ dom..a_in is composed of  
290 residues (59-348) and contains a/5-barrel of  8 anti- 
parallel/3-strands and 8 ~-heliees. The second sm~!!er 
domain consists of  76 residues (422--497) and contains 
4 0c-helices (422--497). The N-terminal part of  the sub- 
unit consists of 56 residues (3-58) and contains one 

a-helix. This part of the structure is entirely buried in 
a neighbouring subunit within tho tetramer. The first 
(~z+/~) domain and the four helix domain are connected 
r,,,.j _~ long po!ypeptide loop which wraps around the 
surface of  the molecule. There are 73 residues (349--421) 
in this segment and the first part o f  it is involved in 
many intt:rsabunit contacts. Analysis o f  hydrogen 
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Parameters 

Table I11 
Summary of refinement statistics 

Target Standard Number 
(or) deviation of para- 

meters 

R-factor (%) 

Bond distances (,4) 
Bond distances (1-2 neighbours) 0.020 
Angle distances (1-3 nelghbours) 0.040 
Planar distance (1-4 neighbours) 0.050 
Planar groups (A) 0.020 
Chiral volumes (A ~) 0.150 

Non-bonded contacts (,~ ) 
Single torsion contacts 0.250 
Multiple torsion contacts 0.250 
Possible hydrogen bonds 0.'~50 

15.01 94,315 

0.012 4,095 
0.032 5,578 
0.062 1,501 
0.016 3,667 
0.143 570 

0.170 1,106 
0.173 929 
0.163 221 

Torsion angles (°) 
Planar 4.0 3.6 528 
Staggered (__. 60,180) 15.0 12.7 644 
Orthonormal (_+ 90) 20.0 31.2 71 

cr is the inverse of the square root of tile least-squares 
the parameters. 
R - factor --- ~IFoI-F, II~Fol 

weight used for 

bonds shows that there are 7 small part o f a  polypeptide 
chain identified as 3to helices. Three of  them are situated 
at the beginning or end of  ~-heliees. 

Comparison of the three-dimensional structures of 
MLC and BLC (coordinates of BLC were taken from 
the Protein Data Bank at the Brookhaven National 
Laboratory [26]) shows that the overall spatial organ- 
isation of MLC and BLC is very similar. The main 
differences between the two molecules are in the N- 
terminal part, where the first helix of BLC is absent in 
MLC and in the connection segment. 

The haem group in these two catalases lies in the same 
position and orientation. The haem in MLC has a 
curved confola~aation as in BLC. The deviation of the 
iron atom from the haem plane ( N A - N B . N C - N D  
plane) is 0.12 A. The distance between the iron atom 
and OH oxygen of the proximal Tyr-339 is 1.9 A. The 
sixth coordination position of  iron is occupied by a 
water molecule. The distance between the water oxygen 
and the iron atom is 2.28 A. One more water molecule 
is situated in the haem pocket and forms hydrogen 
bonds with the iron coordinating water and with zha 
distal histidine important for catalase activity (His-57). 

BLC tightly binds NADPH [3]. In the equivalent po- 
sition in the electron density map of MLC at 3 A reso- 
lution there ::'as some electron density which allowed us 
to suppose that MLC also binds NADPH [7,8]. How- 
ever, in this place in the (Fo-F~) map at i.5 A resolution 
there were several separate peaks which were difficult 
to explain as a NADPH molecule. The highest electron 
density peak situated in the position of the NADPH 

Fig. 2. The electron density map for the haem group. 

phosphate group in BLC was assigned as a sulphate ion 
(Fig. 3) and other peaks were assigned as water. Never- 
theless in the structure of MLC there is space for a 
NADPH molecule, and the possibility that MLC could 
bind NADPH cannot be excluded. No biochemical data 
were obtained about the presence of NADPH in MLC 
prior to crystallization. 

The sequence of NILC determined during the X-ray 

2 

/ 

J 

~ I ?6 

~ 1 8 4  

Fig, 3. Tile difference (Fo-F3 el~tron density peak assigned as 
sulphate ion. The model used ror F~ and q~, calculation included a 

water m~lecule in tiffs position. 
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MLe ; VPP, A'I'OSTBEB GAPA~S DBESLTVGSgGP IVLIt 35 
BL e' s N RDP,~ DP-MEHW~QERAAEEP BV'LTTGG~B ~VGDKI~$L~GP ~ P ~  52 

A ~ * M *  t ~ ~; gr ~ m  t rW V l t  

MLC t DVItLL~'TH~It~DRI4N Z Pg P, RPI.IA~G~C.g~GVPg~D~ ~ P G  85 
I~LC tDV~TD~NAItFDB~RIPgBVVBA~GA~A,~'GYFQY'~IDZTBYS~X 102 

MLa tPLRDPI~'T½FII~(~ERLPNS(3LRDATM~WDFWT~IaPE~Q~R I~4 
BLC tFXP.DALL~'~SI~'%nSEEP.NPETItLKDPDI, P~DFWGLR/~SLI4EVSFLFSDR 202 

MLC tGLPRT~I~MDGYGflHTXLWVBAE~YII~IS~EGVIIBLONDEATQI 234 
taLC :G~I~DetILqIIMDG'/Q~HT~RLIq~M;~AWdCI~H~TDEGIKNLSVQDAARL 252 

l AG~BADVIIR~DL~VIAKGVFPKWBLY X QAI PYS ~GKTYRFB PPDLTKT ~ 284 
BLC l AB~DPDYGLRDLFBAIATGIi~P~WTLY Z ZVMTFS~A~ Z FPFNPFDL~ 302 

MLC ISQAB¥1~RIEV(3VBTL~RBPKNPPAETESA/~SPSIITVPGI(3L~PDRMLLG 334 
t~LC ;PHGD~pLTPVGRLVL~;RHPWBYFAQV~ELA~DPStIMPPGIQPSPDEMI~G 352 

ML~ t RA~A~HDA~LYRV~0L~YlISPDDATH-NYAI~F.Mh'ED-HTGBP~T 3~2 
I~LC tBL~A~PDTHPJIRLGPBYL~IP~CPYP.ARVAN¥~I~GPMCMMDI~GOAPN 402 

~.,C ; "D/PII~D~IISHSNEV~P TNNGH ~.%VGVL~P~AEBLR/~DN~ YGEJ~LT~ 432 
~LC t YYPNSPSB~H~PSAL~HRTHFSGDV~RFII~ -...--~N~DNVT~VRTP~-.K 448 

~ VF S N ~ ~ ~B N I~/~I'VAff, ALEGVR S N VP.AE~ P VI'WI~V~L%T H G E B X QBTVX R 482 
BLC t VLt;~Q E P.ERLC~N X R~IILI~DA~LP ~ EFd~AVKB FS D~/HPQYGS B I EALLI~I~ 498 

t KSC.dl6 X PG'dEAGGEARM 499 
BLC :YN 500 

Fig. 4. X-Ray sequence of MLC aligned with the BLC sequence. 
*indicates identical residues," indicates residues which are not equiva. 
lent (distances between C,~ atoms more than 2.2 A). Of 459 equivalent 

residues 204 are found to be identical. 

study was aligned by a dynamic alignment algorithm 
[27] with the chemical sequence of  BLC and corrected 
by three-dimensional superposition (Fig. 4). The main 
differences between the two catalases are at the ends of 
the polypeptide chain. The first domain is much more 
conserved than other parts of  the molecule. There are 
more changes of amino acid residues in the second do- 
main but the spatial similarity of these parts is neverthe- 
less quite good. The rms deviation between C,~ atoms for 
459 equivalent residues in MLC and BLC is 1.0 A. The 
residues were assumed to be equivalent if their C~ atom 
positions were within 2.2 A after superposition of these 
structures. 

The environment of the haem, including the active 
site, is very conserved except for a few residues. One of 
the most surprising differences between these two cata- 
lases is around the haem group, before the active distal 
His-570 (His-74 in BLC). Val-73 of  BLC is replaced by 
Pro-56 which has the cis conformation, and the small 
hydrophobic Val-72 is replaced by the large charged 
residue Arg-55. 

In spite of the fact that only the X-ray sequence of 
MLC is available at present the refined structure of 
M~ "~ shows '~" '  cloning and sequencing of  ,r~,, M~ c~ 

gene could make this eatalase a good object for enzyme 
engineering experiments to check hypotheses on cata- 
lase activity and molecule assembly. 

A more detailed analysis of  the structure will be pub- 
lished later. 
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